In vitro regeneration of *Jatropha curcas* L, - a first step towards its genetic improvement.

K.E. Danso, N. Afful, H.M. Amoatey, C. Annor, G.Y.P. Klu, A.S. Appiah

Ghana Atomic Energy Commission, Biotechnology and Nuclear Agriculture Research Institute, Department of Plant and Soil Sciences, P. O. Box 80, Legon.

Some facts about Jatropha

- Perennial shrub of the family Euphorbiaceae
- Poisonous branches, seeds, leaves cannot be eaten by humans or animals
- Native to Central America/Mexico
- Currently also found throughout the Tropics in Africa and Asia
- Produces a tap root plus lateral roots when propagated from seed
- Produces only lateral roots when propagated from cuttings
- Seed contain high-quality oil, convertible as biodiesel for use in standard diesel engines
- Seed loses viability in storage

Other Claims

- Tolerant to drought
- Has pesticidal and fungicidal properties
- Has medicinal properties
- Grows well under marginal conditions
- □ Seeds contain 27 40% oil
- Jatropha oil is environmentally superior to petroleum diesel
- Biodiesel miracle tree" holds the key towards solving future energy problems of developing countries

Fig. 1 Fruited plant of Jatropha curcas L.

Courtesy : FACT FOUNDATION (2007)

Issues with Jatropha as a biofuel

- Seed viability
- Productivity Seed/Oil yield
- Land use
- Production cost and selling price

Others

Table 1:Seed yield compared to other crops

<u>Crop</u> Jatropha Coffee Cashew Cocoa

<u>Seed yield/ha (kg)</u> **2500 - 3000** 800 - 3000 800 300 - 800

Table 2: Oil yield compared to other crops

<u>Crop</u>	<u>Oil yield/ha (kg)</u>
Oil palm	5000
Coconut	2260
Jatropha	1600
Rapeseed	1000
Sunflower	800
Soybean	375

Applications of in vitro Laboratory at BNARI

- Routine micropropagation
- Disease elimination
- Germplasm storage

Induction of somatic embryos

Potential for genetic transformation

* Since 2007, lab has been involved in some preliminary investigations on Jatropha

Exp 1: Effect of stage of fruit maturity on *in vitro* viability of *Jatropha curcas* L.

- Seeds obtained from different stages of fruit maturity (green, yellow and black) were collected
- Sterilised with 0.1% mercuric chloride.
- Zygotic embryos were excised
- Cultured on MS medium supplemented with BAP (0-1 mg/l) or KIN (0-1 mg/l), or 2iP (0-1 mg/l) in test tubes.
- Incubated in the dark for three days.
- Transferred to growth room.
- Number of embryos that germinated was recorded.

Exp 2: Effect of BAP, Kinetin or 2iP on regeneration of plantlets from apical shoot tips and meristems

- Juvenile shoots harvested from decapitated plants of Jatropha curcas
- Immersed in 10% commercial bleach containing 5% sodium hydroxide for 10 minutes
- Washed in three changes of sterile distilled water
- Shoot tips again immersed in 70% ethanol
- Washed with three changes of sterilized distilled water
- Cultured on MS medium supplemented with 0-3mg/I BAP, kinetin or 2iP.
- Meristems were dissected under microscope and cultured

The number of explants that developed shoots was recorded four weeks after culture.

Exp 3: Induction of somatic embryos from cotyledons and leaf lobe explants

- Fruits from green, yellow and black stage fruits were collected
- Similarly, young leaf lobes from juvenile shoots were also collected
- Explants sterilised with commercial bleach
- Cultured on MS basal salts supplemented with varying concentrations of 2,4-D and picloram
- Incubated in dark
- Transferred to MS medium supplemented with 1 mg/l BAP for embryo maturation

Table 3. Effect of BAP, Kinetin and 2iP on viability of seeds at green stage of maturity

Maturity stage	Growth regulator	Concentration	Germination (%)
Green		0.0	90.00 ± 3.16
	BAP	0.5	98.33 ± 1.70
		1.0	100.00 ± 0.00
		0.0	90.00 ± 3.16
	Kinetin	0.5	93.33 ± 2.76
		1.0	100.00 ± 0.00
		0.0	90.00 ± 3.16
	2iP	0.5	88.33 ± 3.22
		1.0	98.33 ± 1.70

Twenty seeds were cultured per treatment; 3 Reps per treatment

Table 4: Effect of BAP, Kinetin and 2iP on viability of seeds at yellow stage of maturity

Maturity stage	Growth regulator	Concentration	Germination (%)
Yellow		0.0	93.33 ± 2.76
	BAP	0.5	98.33 ± 1.70
		1.0	100.00 ± 0.00
		0.0	93.33 ± 2.76
	Kinetin	0.5	100.00 ± 0.00
		1.0	98.33 ± 1.76
		0.0	93.33 ± 2.76
	2iP	0.5	88.33 ± 3.22
		1.0	96.67 ± 2.40

Table 5: Effect of BAP, Kinetin and 2iP on viability of seeds at black stage of maturity

Maturity stage	Growth regulator	Concentration	Germination (%)
Black		0.0	55.00 ± 3.63g
	BAP	0.5	78.33 ± 2.76gh
		1.0	88.33 ± 3.54h
		0.0	55.00 ± 3.63i
	Kinetin	0.5	96.67 ± 2.40j
		1.0	83.33 ± 3.54j
		0.0	55.00 ± 3.63k
	2iP	0.5	51.67 ± 3.39k
		1.0	61.67 ± 3.79k

Table 6: Effect of BAP on shoot regeneration from apical shoot tips and meristem explants

Concentration (mg/l)	Percentage shoot regeneration (%)	
	Shoot tip	Meristem
0.0	50.00 ± 0.00a	85.00 ± 1.16a
0.5	55.00 ± 0.67ab	55.00 ± 0.67a
1.0	80.00 ± 1.05b	80.00 ± 1.05a
1.5	65.00 ± 0.95ab	70.00 ± 0.67a
2.0	65.00 ± 0.95ab	65.00 ± 0.95a
2.5	50.00 ± 0.00a	65.00 ± 0.95a
3.0	50.00 ± 0.00a	65.00 ± 0.95a

Table 7. Effect of kinetin on shoot regeneration from shoot tip and meristem explants of *Jatropha*

Concentration (mg/l)

Percentage Shoot regeneration

	Shoot tip	Meristem
0.0	50.00 ± 0.00b	85.00 ± 1.58b
0.5	75.00 ± 0.67bc	85.00 ± 1.58b
1.0	50.00 ± 1.05b	30.00 ± 0.91c
1.5	55.00 ± 0.95b	40.00 ± 0.74cd
2.0	70.00 ± 0.95bc	40.00 ± 0.74cd
2.5	60.00 ± 0.00b	70.00 ± 0.67bd
3.0	40.00 ± 0.00bd	40.00 ± 0.74c

Table 8. Effect of 2iP on shoot regeneration from apical shoot tips and meristem explants of *Jatropha*

Concentration (mg/l)	Percentage shoot regenerations(%)	
	Shoot tip	Meristem
0.0	50.00 ± 0.00e	85.00 ± 1.58e
0.5	75.00 ± 0.00ef	90.00 ± 1.58e
1.0	60.00 ± 1.29ef	80.00 ± 1.05e
1.5	85.00 ± 0.95f	90.00 ± 0.95e
2.0	85.00 ± 0.95f	80.00 ± 1.05e
2.5	50.00 ± 0.00e	95.00 ± 0.67e
3.0	40.00 ± 1.45e	80.00 ± 1.05e

Somatic embryo induction

Table 9. Effect of 2,4-D and picloram on callus development from cotyledon explants of *Jatropha curcas*

Fruit maturity stage	Growth regulator	Percentage calli development		
	Conc'n (mg/l)	2,4-D	Picloram	
Green	0	0.00 ± 0.00e	0.00 ± 0.00a	
	4	90.0 ± 0.67f	75.00 ± 0.00b	
	8	15.00 ± 0.95e	95.00 ± 0.67bc	
	16	0.00 ± 0.00e	95.00 ± 0.67bc	
	24	0.00 ± 0.00e	60.00 ±1.16bd	
Yellow	0	0.00 ± 0.00j	0.00 ± 0.00g	
	4	70.00 ± 0.67k	95.00 ± 0.67h	
	8	0.00 ± 0.00m	75.00 ± 0.00i	
	16	0.00 ± 0.00k	85.00 ± 0.74hi	
	24	0.00 ± 0.00m	95.00 ± 0.67h	18

Table 8. Effect of 2,4-D and picloram on callus development from leaf lobe explants of *Jatropha curcas*

Growth regulator	Percentage calli development	
Conc'n (mg/l)	2,4-D	Picloram
0	0.00 ± 0.00d	0.00 ± 0.00 a
4	25.00 ± 0.67e	35.00 ± 0.95b
8	60.00 ± 0.95f	95.00 ± 0.67c
16	20.00 ± 0.00de	55.00 ± 0.67b
24	15.00 ± 0.00de	45.00 ±0.67b

Fig 2:Effect of (a) Kin, (b) BAP and (c) 2iP on germination of green stage zygotic embryos

Embryos were cultured on 1mg/l of Kin, BAP or 2iP.

Fig3: Plantlets regenerated from shoot tips

Plantlets regenerated from shoot tips cultured on MS medium supplemented with 2 mg/l 2iP

Fig 4: Effect of picloram on callus initiation (Step 1)

Callus formation on picloram

Fig 5: Effect of BAP on calli development (Step 2)

No somatic embryos were developed

Main findings

1.Percent germination was lowest in embryos obtained from seeds at black stage of maturity;

- Addition of BAP or Kinetin significantly enhanced germination in embryos from seeds at black stage of maturity;
- For embryos obtained from seeds at green or yellow stages of maturity, supplementary cytokinin in the growth medium was not needed;
- 3. None of BAP, Kinetin or 2iP required for shoot regeneration from meristems;

Main findings cont'd

- However, when shoot tips are used the same cytokinins (0.5 – 1.0 mg/l) were required to enhance shoot regeneration
- 5. Both 2,4-D and picloram induced calli from cotyledon and leaf lobe explants;
- Calli did not develop somatic embryos on transfer to maturation medium indicating that calli were not embryogenically competent;

Discussion

- Regenerated plants from both meristems and shoot tips;
- Basic MS medium without additional cytokinins supports in vitro germination of embryos at green and yellow stages of maturity;
- However, embryos at black stage of maturity require supplement of BAP or Kinetin to enhance germination;
- Successful callus initiation, but calli not embryogenically competent.

Future investigation

- □ Improve upon callus induction
- Intensify efforts at somatic embryo development

Prospects for genetic transformation

Way forward

Areas of improvement desired

- High seed yield/ha
- High oil yield per tonne

Ready to collaborate with other researchers/labs

Thank you

